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Abstract 22 

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection elicits an antibody 23 

response that targets several viral proteins including spike (S) and nucleocapsid (N); S is the 24 

major target of neutralizing antibodies. Here, we assess levels of anti-N binding antibodies and 25 

anti-S neutralizing antibodies in unvaccinated children compared with unvaccinated older adults 26 

following infection. Specifically, we examine neutralization and anti-N binding by sera collected 27 

up to 52 weeks following SARS-CoV-2 infection in children and compare these to a cohort of 28 

adults, including older adults, most of whom had mild infections that did not require 29 

hospitalization. Neutralizing antibody titers were lower in children than adults early after 30 

infection, but by 6 months titers were similar between age groups. The neutralizing activity of 31 

the children’s sera decreased modestly from one to six months; a pattern that was not 32 

significantly different from that observed in adults. However, infection of children induced much 33 

lower levels of anti-N antibodies than in adults, and levels of these anti-N antibodies decreased 34 

more rapidly in children than in adults, including older adults. These results highlight age-related 35 

differences in the antibody responses to SARS-CoV-2 proteins and, as vaccines for children are 36 

introduced, may provide comparator data for the longevity of infection-elicited and vaccination-37 

induced neutralizing antibody responses. 38 

Keywords 39 

SARS-CoV-2, pediatric serology, neutralizing antibodies, anti-nucleocapsid antibodies, 40 

longitudinal dynamics 41 
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Introduction 43 

SARS-CoV-2, the causative agent of coronavirus disease 2019 (COVID-19), elicits an antibody 44 

response targeting multiple viral proteins following infection. Anti-spike (S) antibodies are of 45 

particular importance because S is the major target of neutralizing antibodies and neutralizing 46 

anti-S antibody titers correlate with protection (1–4). For this reason, currently authorized 47 

vaccines only include the S antigen and specifically induce anti-S responses. Additionally, 48 

SARS-CoV-2 neutralization assays are designed to measure the potency of antibodies that block 49 

viral binding and entry to cells, including via inhibiting S binding to host angiotensin converting 50 

enzyme 2 (ACE2) receptor on host cells, and/or inhibiting S fusion. Nucleocapsid (N) protein is 51 

also highly immunogenic during SARS-CoV-2 infection and is a predominant target of binding 52 

antibodies making it a robust marker of infection. In adults, circulating antibodies rise to peak 53 

titers within 3-5 weeks after infection and then gradually begin to wane (1, 3, 5–14). Studies 54 

have shown a strong positive correlation between neutralizing antibody titers and protection from 55 

subsequent infection (4, 15–19). 56 

COVID-19 in children tends to be milder than in adults, resulting in lower risk of progression to 57 

hospitalization and death (20, 21). However, clinical manifestations of COVID-19 vary widely in 58 

children as in adults and can range from asymptomatic infections to illness lasting for several 59 

months (22). Furthermore, infection by SARS-CoV-2 in children causes a greater burden of 60 

hospitalization and death than the pre-vaccine burden of some common childhood illnesses, 61 

including varicella (23). Previous work has documented the acute and convalescent dynamics of 62 

the SARS-CoV-2 antibody response in adults across a wide range of ages and disease severities 63 
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(1, 3, 8, 10, 11, 14, 23, 24), but fewer data are available detailing the longevity of circulating 64 

antibodies in the pediatric population (24–27).  65 

Here, we follow a cohort of 32 SARS-CoV-2-infected convalescent children <18 years old for up 66 

to 52 weeks post-symptom onset, measuring anti-S neutralizing antibody levels with a 67 

pseudoneutralization assay, and anti-N binding antibody levels. We compare the pediatric 68 

antibody response to those in a previously characterized cohort of adults (3). 69 

Materials and Methods: 70 

Pediatric Participants 71 

Our IRB-approved study enabled us to enroll children, defined as <18 years old at enrollment, 72 

including children with underlying medical conditions, and obtain sera for the assessment of 73 

immune responses to SARS-CoV-2 infection at Seattle Children’s Hospital, Seattle, WA, 74 

beginning in April 2020. Informed consent was obtained from parents and assent from children 75 

over 7 years of age. The REDCap electronic data collection tool was used to acquire 76 

demographics, hospitalization data; clinical information including respiratory support, ICU 77 

admission, length of stay; laboratory studies including viral testing results, and medical history 78 

including chronic underlying medical conditions (28). This study was reviewed and approved by 79 

the Seattle Children’s Hospital IRB§. 80 

 Children with confirmed or presumed SARS-CoV-2 infection were recruited to our study 81 

during April 2020 through January 2021. Children were considered to have a confirmed SARS-82 

CoV-2 infection if they tested positive for SARS-CoV-2 by RT-PCR. Children were presumed to 83 

have SARS-CoV-2 infection if they did not have documentation of a positive RT-PCR, but had 84 

detectable SARS-CoV-2-specific antibodies and either: 1) presented with confirmed Multisystem 85 
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Inflammatory Syndrome in Children (MIS-C), or 2) were symptomatic and had an RT-PCR-86 

positive household contact. Reported symptoms included but were not limited to sore throat, 87 

cough, fever, loss of taste or smell, fatigue, runny nose, head ache, and diarrhea. 88 

Enrollment included hospitalized children, children who were tested for SARS-CoV-2 using RT-89 

PCR as outpatients as determined by their provider, and children who did not receive medical 90 

care but were recruited from the community, including community-based surveillance platforms 91 

(29). Children were recruited during acute illness with sera drawn at approximately 4-8 weeks 92 

(1-2 months), 24 weeks (6 months), and 52 weeks (12 months) following symptom onset for 93 

confirmed or presumed infection. Only children who provided at least two specimens by May 94 

2021 were included in this analysis. In addition, only presumed cases with at least one positive 95 

serological result were included (Supplemental Table 1). For asymptomatic cases, weeks post-96 

positive RT-PCR test result was used as a substitute for weeks post-symptom onset. For children 97 

who developed MIS-C, “weeks post-symptom onset” refers to acute infection symptoms before 98 

MIS-C onset. No children in this study were vaccinated prior to specimen collection. 99 

Adult Participants 100 

Adult specimens were collected as a part of the Hospitalized or Ambulatory Adults with 101 

Respiratory Viral Infections (HAARVI) cohort at the University of Washington Department of 102 

Medicine (3, 30, 31). Adults were enrolled from March through May of 2020. A convenience 103 

sample of adults who provided specimens at roughly eight- and twenty-four-weeks post-104 

symptom onset were included in this analysis. Study enrollment and specimen collection are 105 

detailed elsewhere (3, 30, 31). Briefly, adults were enrolled in the study following RT-PCR 106 

confirmed SARS-CoV-2 infection. Inpatients were recruited for enrollment during their hospital 107 
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stay at Harborview Medical Hospital, University of Washington Medical Center, or Northwest 108 

Hospital in Seattle, Washington in 2020. Asymptomatic adults were identified as participants 109 

who responded “None” to a symptom questionnaire and tested positive for SARS-CoV-2 110 

infection via outpatient or community testing. Informed consent was provided by all participants 111 

or their legally authorized representatives. No adults in this study were vaccinated prior to 112 

specimen collections since no vaccines were available during the collection period, and no adults 113 

in this study were enrolled in ongoing vaccine clinical trials. Weeks post-positive RT-PCR test 114 

result was used in lieu of weeks post-symptom onset for asymptomatic adults. 115 

Laboratory Methods 116 

Pediatric specimen collection 117 

Whole blood collection was scheduled for 4 to 8-weeks, 24-weeks, and 52-weeks post-symptom 118 

onset for the pediatric cohort (Supplemental figure 1). Blood specimens were collected in 119 

serum separator tubes, stored at 5oC, and spun within 24 hours before being aliquoted and stored 120 

at -80�. Heat inactivation of all specimens was performed at 56� for 30 minutes before 121 

performing serological assays. 122 

Adult specimen collection 123 

Whole blood collection was scheduled for 8- and 24-weeks post-symptom onset for the adult 124 

cohort. Blood specimens were immediately added to acid citrate dextrose tubes upon collection 125 

which were then spun down to separate out the red blood cell fraction. Within 6 hours following 126 

collection, aliquots of these specimens were frozen at -20� for storage. Prior to use in 127 

serological assays, all specimens were heat inactivated at 56� for one hour. 128 
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Neutralization assays 129 

Neutralization assays were performed as previously reported using spike-pseudotyped lentiviral 130 

particles (3). The spike protein used is based on Wuhan-Hu-1 (GenBank: MN908947) with a 21 131 

base pair deletion (delta21) at the terminus of the cytoplasmic tail that enhances viral titers (32–132 

37). The spike also contains the mutation D614G that has become predominant in circulating 133 

strains (38). Plasmid HDM_Spikedelta21_D614G encoding this spike protein is available from 134 

AddGene (no. 155130) or BEI Resources (NR-53765) along with the full annotated sequence. To 135 

perform neutralization assays, 1.25x104 HEK-293T-ACE2 cells (39) (BEI resources NR-52511) 136 

are added in 50ul per well of a 96-well poly-L-lysine coated plate (Greiner; no. 655936). Our 137 

limit of detection for the neutralization assay is 1:20 since this is the starting serum dilution. All 138 

assays included pre-pandemic pooled serum collected between 2015 to 2018 as a negative 139 

control. No substantial neutralization was observed for a pool of pre-pandemic sera at a dilution 140 

of 1:20. SARS2 Spike-D614G-delta21 pseudotyped lentivirus particles encoding luciferase were 141 

added at a dilution of 200,000 RLU per well as determined by titering. The virus-antibody plate 142 

was then incubated for 1 hour at 37°C before being added to the plate with cells. Neutralization 143 

titers were determined using a plate reader to measure luciferase activity at 50 hours post-144 

infection. Measurements were given as the reciprocal dilution of sera at which viral infection 145 

was inhibited by 50% (NT50). NT50 values were calculated using the neutcurve python package 146 

version 0.5.3 available here: https://github.com/jbloomlab/neutcurve which fit a Hill curve to our 147 

data to determine the 50% inhibitory concentration (IC50). NT50 values reported here were the 148 

reciprocal of the IC50. 149 

 150 
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SARS-CoV-2 IgG assay  151 

The SARS-CoV-2 IgG assay, an FDA Emergency Use Authorized immunoassay, which utilizes 152 

a chemiluminescent test to assess immunoglobulin G (IgG) binding to nucleocapsid (N) protein, 153 

was performed according to manufacturer specifications (Abbott). Anti-N IgG index values were 154 

assessed; higher index values reflected higher antibody levels. An index value of > 1.40 is 155 

considered a positive result for this assay. Sensitivity and specificity of the SARS-CoV-2 IgG 156 

assay have been reported elsewhere (23, 40–44). 157 

Comparison of antibody levels in a subset of immunocompetent children and adults 158 

For comparison of antibody levels between pediatric participants and adults, we limited our 159 

analysis to only specimens that were collected within a similar range of weeks post-onset 160 

between 8-13 (first collection period) and 24-29 (second collection period) weeks for both 161 

cohorts. In this sub-analysis, we excluded participants with MIS-C development, complicating 162 

immunocompromising conditions, or receipt of multiple blood transfusions. We assessed 163 

changes in antibody titers over time among a limited number of children and adults with two 164 

specimens collected within these comparative time frames. Statistical significance was 165 

determined by Mann Whitney test. 166 

Results 167 

Study participants. From April 2020 through June 2021, we enrolled 97 pediatric participants 168 

of whom 42 had completed at least 6-months of follow-up with two blood draws obtained by 169 

May 2021 (Figure 1). Thirty-two of the 42 children had evidence of confirmed or presumed 170 

infection and were included in the pediatric analysis: 27 of 32 had a confirmed positive RT-PCR 171 
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test, including one of two children who presented with MIS-C; one of 32 had a positive 172 

serological test result and presented with MIS-C; and four of 32 had a positive serological test 173 

result and a known RT-PCR-positive household member (Supplemental Table 1). Among the 174 

32 children included in this analysis, median age was 12 years, 6 (19%) were female, 5 (16%) 175 

were symptomatic and hospitalized, 25 (78%) were symptomatic but not hospitalized, and 2 176 

(6%) were asymptomatic during acute infection (Table 1, Figure 2). Of the two children who 177 

developed MIS-C: one (C27) had an asymptomatic acute infection (identified through RT-PCR) 178 

and subsequently required ICU admission and supplemental oxygen in the form of bilevel 179 

positive airway pressure upon the onset of MIS-C symptoms; the other (C15) had an initial 180 

SARS-CoV-2 respiratory infection managed as an outpatient but was subsequently hospitalized 181 

with MIS-C, during which time C15 was SARS-CoV-2 RNA-negative and antibody-positive. 182 

Five children had underlying immunocompromising conditions or received multiple blood 183 

transfusions; four of whom were hospitalized. Among the 25 children who were not 184 

immunocompromised, did not receive multiple blood transfusions, and did not present with MIS-185 

C (Figure 2A), one child was hospitalized, 22 children were symptomatic but not hospitalized, 186 

and two children were asymptomatic. 187 

A second cohort of 14 SARS-CoV-2-infected unvaccinated immunocompetent adults between 188 

the ages of 47 and 79 years (median: 65) was included in this study as a comparator group. We 189 

previously profiled neutralizing antibody dynamics for all these adults out to 90 days post-190 

symptom onset (3) (See Supplemental Table 2). Here we performed additional assays for the 191 

same adult participants to enable direct comparison with the pediatric cohort in a sub-analysis. 192 

This convenience sample of 14 adults included two who were symptomatic and hospitalized, 8 193 

who were symptomatic non-hospitalized, and 4 who were asymptomatic. Eight (57%) adults 194 
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were female. Two adult participants reported underlying conditions: one participant (A3) was 195 

recorded as having diabetes, chronic obstructive pulmonary disease, asthma, and obstructive 196 

sleep apnea; and another (A13) had hypertension. 197 

Specimen collection. During the 4- and 24-week pediatric blood collections, specimens were 198 

collected from the 32 children at a median of 4.5 weeks (IQR: 2.5weeks; range: 2-18weeks) and 199 

26 weeks (IQR: 1.25weeks; range: 23-35weeks), respectively; 3 children also had blood 200 

collected at 52 weeks. At 8- and 24-weeks, specimens were collected from the 14 adults at a 201 

median of 9.5 (range: 8-13weeks, IQR:1wk) and 25 weeks (range: 24-29weeks, IQR: 1wk), 202 

respectively. To compare pediatric and adult responses, we performed a sub-analysis which 203 

included specimens collected within two collection periods: the first at 8-13 weeks, and the 204 

second at 24-29 weeks. This sub-analysis included specimens from all 14 adults; for children, 7 205 

children had blood drawn in the first collection period (median = 9.5 weeks; IQR = 2.5) and 24 206 

children had blood drawn in the second collection period (median 26 weeks; IQR=1). Five 207 

children and 14 adults, with specimens collected at both timepoints, were included in fold-208 

change analyses.  209 

Neutralization dynamics over time in children. We measured neutralization titers for the 210 

pediatric specimens collected at each time period (Figure 2A, B, & C). All children with 211 

confirmed or presumed infections had measurable neutralizing antibody titers for at least one 212 

specimen. For the 25 children without MIS-C or immunocompromising conditions or multiple 213 

blood transfusions, overall neutralization titers changed very little over the course of 24 weeks 214 

from a geometric mean NT50 of 214 and 244 for the first and second collection period, 215 

respectively. Interestingly, a greater than 4-fold increase in neutralization titer between the first 216 
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and second collection period was seen for four children all of whom were symptomatic but not 217 

hospitalized. If these four children are excluded, the geometric mean NT50 decreases by 1.86-fold 218 

from the first to the second collection period (from 245 to 132, respectively). For two of the 25 219 

children without immunocompromising conditions, a decrease of greater than 4-fold between 4 220 

and 24 weeks was observed. Both children were symptomatic of whom one was hospitalized. For 221 

19 (76%) of the 25 children, less than 4-fold (range 3.86- to 1.02-fold) changes in neutralization 222 

titers were observed. One child with increasing titers, (C32), had no detectable neutralization 223 

titer at 3 weeks post-symptom onset despite testing positive by RT-PCR, but subsequently 224 

developed high neutralization titers by 26 weeks. Despite the variability among individual 225 

immunocompetent children, some trends in the overall antibody dynamics were observed 226 

(Figure 3A). Nearly all immunocompetent children had neutralizing activity at all timepoints, 227 

and the majority of children (15 out of the 25 total) exhibited at least a 25% decrease in 228 

neutralization titers over 24 weeks. 229 

For further clinical and laboratory data on children with underlying immunocompromising 230 

conditions, multiple blood transfusions, or MIS-C, please refer to Figures 2B & C. Three 231 

children with specimens at 52 weeks had detectable neutralizing antibodies (Figure 2A, B, & 232 

C). Of note, one child (C26) with blood collected at 52 weeks reported a febrile illness, with 233 

negative SARS-CoV-2 RT-PCR, between the 24- and 52- week specimen collection (Figure 234 

2C).  235 

Comparison of neutralization dynamics in immunocompetent children and older adults. 236 

We next compared neutralization titers and their longitudinal dynamics in children and adults. To 237 

accomplish this, we measured plasma neutralizing antibody levels from adults over a 24-week 238 
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period. Neutralization titers for specimens collected at 8- to 13-weeks post-symptom onset (first 239 

collection period) were previously reported using the same spike pseudotyped lentivirus 240 

neutralization assay but without the D614G spike mutation (3). Here, we repeated the 241 

neutralization assays using spike pseudotyped lentivirus encoding D614G as well as performing 242 

neutralization assays for the first time on specimens collected between 24 and 29 weeks (second 243 

collection period). Neutralization titers had a geometric mean of 385 (range: 56 - 4,487) and 302 244 

(range: 67 – 880) at the first and second collection period, respectively (Supplemental figure 2). 245 

Of the 14 participants in our adult cohort, only one demonstrated a greater than 4-fold decrease 246 

in neutralization titer over the observation period, and no adults showed an increase greater than 247 

4-fold. There were no adults for whom neutralization titers fell below the limit of detection 248 

during the timeframe tested. 249 

For comparison of neutralization titers between the children and adults including older adults, we 250 

restricted our analysis to only specimens collected in the same timeframe for both cohorts, as 251 

well as only including children without immunocompromising conditions, those who did not 252 

receive multiple blood transfusions, and those without MIS-C. In this sub-analysis, we found that 253 

children had significantly lower neutralization potency (geometric mean titer [GMT] = 118, 254 

range: 46-256, N=7, p<0.05) than adults (GMT = 385, range: 56-4,487, N=14) during the first 255 

collection period, but titers were not significantly different between age groups by the second 256 

collection period (children: GMT= 244, range: 27-13,694, N=22; adults: GMT = 302, range: 67-257 

880, N=14; p = 0.23) (Figure 3B). If the four children with neutralization titers that increased by 258 

greater than 4-fold are excluded, the children’s GMT for the second collection period is 2.46-fold 259 

lower than the adults’ (123 compared to 302 in children and adults, respectively). We calculated 260 

the fold change in titers for each individual measured at the first collection period relative to 261 
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those measured for the same individual during the second time period. Fold change analysis was 262 

limited to 5 children with specimens collected at both first and second collection period; no 263 

difference in the fold change between children (geometric mean fold decrease = 1.12, N=6,) and 264 

adults (geometric mean fold decrease = 1.28, N=14) was detectable (p = 0.893). (Figure 3C). 265 

Anti-nucleocapsid antibody dynamics over time in children. Anti-N antibody levels were 266 

determined for all pediatric specimens (Figure 4A, B, & C). Among the 25 children without 267 

immunocompromising conditions, multiple blood transfusions, or MIS-C, 23 and 14 had 268 

detectable anti-N antibodies at the first and second collection periods, respectively; 2 children 269 

with confirmed infection by RT-PCR (C1 and C32) did not have detected anti-N antibodies at 270 

either timepoint. Anti-N antibody levels dropped considerably from a geometric mean index of 271 

3.7 to 1.3 over 24 weeks. Eighteen of the 23 children, who were positive for anti-N antibodies at 272 

the first collection period, exhibited a decrease in index values of greater than 2-fold, and an 273 

additional five changed less than 2-fold. No children showed an increase in anti-N antibodies. In 274 

totality, the children without immunocompromising conditions showed very similar declining 275 

trends in anti-N antibody levels across time (Figure 5A). Of the children with a positive index at 276 

4 weeks, values ranged from 1.9 to 8.0 and from undetectable to 7.3 by the first and second 277 

collection periods, respectively. 278 

For anti-N antibody levels and clinical information for the children with underlying 279 

immunocompromising conditions, multiple blood transfusions, or MIS-C refer to Figure 4B & C. 280 

The antibody dynamics out to 52-weeks post-symptom onset were measured for three children 281 

all of whom had levels below the limit of detection by this later time period (Figure 4A, B, &C). 282 
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Comparison of pediatric and adult anti-nucleocapsid antibody dynamics. Next, we 283 

compared anti-N antibody dynamics in children and adults. We first measured anti-N antibody 284 

levels for all adult specimens in our cohort (Supplemental figure 3). Overall, geometric mean 285 

values in adults fell from 6.0 to 3.3 between the first and second collection period, respectively. 286 

One adult (A12) had values below the limit of detection at both 8- and 24-weeks post-symptom 287 

onset. Of the adults with a positive index at 8 weeks, values ranged from 4.2 to 9.4 and from 1.9 288 

to 7.7 by the first and second collection period, respectively. No adults with positive index values 289 

at the first timepoint fell below the limit of detection by the later timepoint. This is in stark 290 

contrast to the pediatric cohort where many fell below detectable levels over the course of the 291 

study. Furthermore, only 3 adults showed a greater than 2-fold decrease in index values. 292 

Compared to the pediatric cohort, adults had higher anti-N antibody levels at both timepoints 293 

measured although not quite reaching statistical significance at 8-13 weeks (children: GMT = 294 

4.7, range: 3.0-6.2; adults: GMT = 6.0, range: 0.8-9.4; p=0.053) (Figure 5B). The difference 295 

between adult and child index values was greatest at the later 24- to 29-week timepoint (children: 296 

GMT = 1.2, range: 0.2-7.3; adults: GMT = 3.3, range: 0.2-7.7; p<0.0005) suggesting that anti-N 297 

antibodies may wane faster in children than adults. To test this, we compared the fold change 298 

between the first and second collection periods in children and in adults. We found a greater 299 

decrease for the pediatric cohort (geometric mean decrease of 4-fold) demonstrating that these 300 

children lost N antibody binding at a faster rate than the adult cohort (geometric mean decrease 301 

of 1.8-fold) (Figure 5C). 302 

Discussion 303 
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In this study, we describe the kinetics of serum antibodies over time in children after infection 304 

with SARS-CoV-2. In our convenience samples of unvaccinated children and adults with 305 

confirmed or presumed SARS-CoV-2 infection, we found that pediatric serum neutralizing titers 306 

were maintained over 24 weeks while anti-N-binding antibodies waned quickly. Importantly, 307 

neutralizing antibody titers were highly variable among individual children as has been 308 

previously observed in adults (1, 3, 6, 8, 10, 11, 23, 24, 45). Other studies have demonstrated that 309 

greater disease severity and higher viral load are associated with higher antibody levels in adults 310 

(3, 10, 46). The limited number of asymptomatic, hospitalized, and MIS-C cases in our cohort 311 

prevented analysis of the role that disease severity may play in this variability. While further 312 

investigation is needed, the wide range of neutralization titers and anti-N antibody levels 313 

observed in our group of 22 immunocompetent, non-MIS-C presenting children, who were 314 

symptomatic but not hospitalized, suggests that disease severity may not entirely explain the 315 

observed heterogeneity. 316 

There are several reasons why antibody responses to SARS-CoV-2 infection could be different 317 

in children compared to adults, including disease typically being less severe in children (21, 47–318 

51) as well as immune senescence and greater burden of comorbidities in older adults (52–58). 319 

Further, primary infections with respiratory pathogens tend to occur early in life leaving 320 

uncertainty about how antibody responses to primary infection may differ with age. Additionally, 321 

children are susceptible to life threatening MIS-C following infection, and it remains unclear if 322 

and/or how the immune response following infection may impact development of such sequelae. 323 

Interestingly, only a modest and non-significant decrease in neutralizing antibody level was 324 

detected for pediatric specimens collected out to six months. A similar persistence in 325 
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neutralization potency was also observed in the adult cohort, suggesting that there might be long 326 

term maintenance of neutralizing antibodies regardless of age following SARS-CoV-2 infection. 327 

This finding is in line with several other bodies of work demonstrating the persistence of 328 

neutralizing antibodies over many months (9, 26, 59–61). We did, however, detect lower levels 329 

of neutralization in children’s serum compared to adults early after infection. This finding is 330 

perhaps surprising given recent work, in the context of vaccination, showing that older adults, 331 

similar to the age group of adults reported here, develop lower neutralizing titers than younger 332 

adults (62). Antibody dynamics across ages may be different between infection and vaccination, 333 

and other factors such as specimen collection time or disease severity could also contribute the 334 

difference between this study and ours. Interestingly, by 24 weeks, a difference in neutralization 335 

titers between children and adults was no longer detectable. This leveling of neutralization titers 336 

over time has also been observed for some (3) but not all (11) studies of adults who have disease 337 

of different severity: adults with severe disease have higher initial titers at early, but not later, 338 

timepoints (3). Overall, the neutralizing antibody kinetics that we observe for children are similar 339 

to adults with mild infections (3, 14). A previous study corroborates our findings of lower 340 

pediatric neutralization titers early after infection by measuring neutralization titers in children 341 

and adults out to 60 days (24), and another study looking at only hospitalized children and adults 342 

reported the same (63). However, one study (26) found that younger children had higher titers 343 

than older children and adults. Differences in study population and sampling timepoints could 344 

explain these differences. 345 

The most striking difference in SARS-CoV-2 antibody levels between children and adults was 346 

seen for anti-N antibodies. Although not statistically significant, children tended to have lower 347 

levels than adults early after infection and a significantly lower level after six months. Lower 348 
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anti-N antibody levels in children than adults have been reported in another study as well (24). 349 

Those authors speculated that, since nucleocapsid protein is disseminated during infection 350 

through the lysis of infected cells, children may experience lower levels of N antigen expression 351 

due to their reduced duration of illness and potentially lower levels of viral replication (24). 352 

Alternatively, the cumulative lifetime exposure to betacoronavirus infections in adults may 353 

repeatedly boost antibodies to the more conserved nucleocapsid proteins that are cross-reactive 354 

to SARS-CoV-2, as has been observed for conserved influenza proteins (64). It is important to 355 

note that several studies have found that the SARS-CoV-2 IgG assay used for this study 356 

decreases in sensitivity over time faster than in other assays (13, 23, 40–44). In addition, the 357 

SARS-CoV-2 IgG assay only has emergency use authorization for qualitative assessment of 358 

antibodies and not quantitative. 359 

Limitations of our study include small sample size,  a limited number of children with follow-up 360 

at 52-weeks, and differences in the sex distribution between the pediatric and adult cohorts. 361 

Follow-up is ongoing with children who had not yet reached 52-weeks post-symptom onset at 362 

the time of this analysis. Furthermore, blood volume obtained from younger children is limited 363 

and therefore the number of assays utilized was also limited. The adult comparative specimens 364 

were obtained from the same geographic location and analyzed in the same laboratory, although 365 

not necessarily collected from the same families or at the same time. The adult specimens were 366 

also plasma, whereas the pediatric specimens were serum, and the differences in collection and 367 

storage of these could possibly result in  slight differences in antibody concentrations. 368 

Additionally, the adults in this study were a convenience sample of a broader study, and 369 

approximately half were older adults, over 65 years of age, meaning that the data presented here 370 

may not be representative of all adults across wider age ranges. Likewise, our pediatric cohort 371 
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was also a convenience sample and may also not be representative of the broader population. 372 

Furthermore, unlike the pediatric cohort, adults were only enrolled following RT-PCR confirmed 373 

infection without enrollment based on household RT-PCR positive contacts. Of note, both 374 

children and adult cohorts were enrolled prior to the widespread introduction of the SARS-CoV-375 

2 Delta variant. 376 

Overall, our results suggest that although neutralizing antibody responses to SARS-CoV-2 are 377 

broadly similar between adults and children, anti-N antibodies are elicited at lower levels in 378 

children than adults. These results contribute to our knowledge of pediatric immune responses to 379 

SARS-CoV-2 over time, and the data on the longevity of neutralizing antibodies may prove 380 

valuable for comparison investigations of immunity induced by vaccines in children. 381 
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 696 

Main text tables and figure legends: 697 

Table 1. Pediatric and adult cohort demographics by disease severity. 698 

Pediatric cohort 

   

Characteristic 

Asymptomatic 

n=2 

Symptomatic 

non-hospitalized 

n=25 

Symptomatic 

hospitalized 

n=5 

Overall 

n=32 

Age, median (range) 10 (9.3-10.7) 11.8 (0.2-17.8) 16 (3.6-17.7) 

12 (0.2-

17.8) 

Sex, no. (%)         

Female 0 (0) 4 (16) 2 (40) 6 (19) 

Male 2 (100) 21 (84) 3 (60) 26 (81) 

Immunocompromised or received 

multiple blood transfusions* 0 1 4 5 

*No other children reported chronic conditions. 
   Adult cohort 

   

Characteristic 

Asymptomatic 

n=4 

Symptomatic 

non-hospitalized 

n=8 

Symptomatic 

hospitalized 

n=2 

Overall 

n=14 

Age, median (range) 69.5 (60-79) 65 (47-76) 59 (54-64) 65 (47-79) 

Sex, no. (%)         

Female 3 (75) 4 (50) 1 (50) 8 (57) 

Male 1 (25) 4 (50) 1 (50) 6 (43) 
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 699 

Figure 1. Pediatric study inclusion criteria flowchart. Evidence of infection included a PCR-700 

positive test (n=28) or positive serological test result following a known RT-PCR-positive 701 

household exposure (n=4) and/or presentation with MIS-C (n=2). 702 
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703 

Figure 2: Neutralization titers in children over time. Neutralizing antibody titers (NT50) in A) 25 704 

children with confirmed SARS-CoV-2 infection, B) 2 children who developed MIS-C following 705 

6 

25 
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acute infection and C) cases complicated by immunosuppression (N = 4) or multiple blood 706 

transfusions (N = 1) in 5 children with confirmed SARS-CoV-2 infection followed prospectively 707 

over time shown as weeks. Vertical lines represent the week of positive RT-PCR test result(s), 708 

and shaded areas indicate weeks with consecutive positive RT-PCR test results. Colors show 709 

disease severity during acute infection.  Dotted horizontal lines indicate the limit of detection 710 

(20). 711 

 712 

713 

Figure 3. Neutralization potency kinetics in children compared to adults. A) Aggregated 714 

trajectories of pediatric neutralization titers (NT50) longitudinally with lines connecting 715 

7 

ly 
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specimens from the same individual for the 25 pediatric participants without underlying 716 

immunosuppression, receipt of multiple blood transfusions, or MIS-C. B) Comparison of adult 717 

and pediatric neutralization titers collected within the time periods 8 to 13 weeks (adults N = 14; 718 

children N = 7) and 24 to 29 weeks (adults N = 14; children N = 22) for the participants without 719 

underlying immunosuppression, receipt of multiple blood transfusions, or MIS-C. C) Analysis of 720 

fold change in neutralization titers at 24 to 29 weeks (adults N = 14; children N = 6) relative to 721 

titers at 8 to 13 weeks for adults and children without underlying immunosuppression, receipt of 722 

multiple blood transfusions, or MIS-C. Significance determined by Mann Whitney test. 723 
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724 

Figure 4. Anti-nucleocapsid antibody binding in children over time. Anti-N antibody titers in A) 725 

25 children with confirmed SARS-CoV-2 infection, B) children who developed MIS-C 726 

following acute infection, and C) cases complicated by immunosuppression or multiple blood 727 

9 
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transfusions in 5 children with confirmed SARS-CoV-2 infection followed prospectively over 728 

time shown as weeks. Vertical lines represent the week of positive RT-PCR test result(s), and 729 

shaded areas indicate weeks with consecutive positive RT-PCR test results. Colors show disease 730 

severity during acute infection. Dotted horizontal lines indicate the limit of detection for the 731 

SARS-CoV-2 IgG assay (1.40). 732 

 733 

734 

Figure 5. Change in nucleocapsid-binding antibody levels longitudinally in children and adults. 735 

A) Aggregated index values for children without immunocompromising conditions over one-736 

year post-symptom onset with lines connecting specimens from the same individual. B) 737 

0 

e 
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Comparison of index values between pediatric and adult cohorts restricted to the same time 738 

periods of collection. C) Change in index values at 24 to 29 weeks relative to specimens 739 

collected at 8 to 13 weeks for children and adults with specimens collected within both 740 

timeframes. Significance determined by Mann Whitney test. Dotted lines indicate the limit of 741 

detection for the SARS-CoV-2 IgG assay (1.40). 742 

 743 

 744 

Supplemental figures: 745 

 746 

Supplemental Table 1. Evidence of SARS-CoV-2 infection among patients without a confirmed 747 

SARS-CoV-2 RT-PCR. 748 

 749 

Patient ID Evidence of SARS-CoV-2 infection

Epi-week of household 

RT-PCR test

Epi-week of participant 

symptom onset

C15

Experienced syptomatic infection, developed MIS-C, neutralization 

and nucleocapsid antibodies confirmed through serological testing; 

this child is listed un the MIS-C subset in inclusion flowchart. not applicable

2020 week 11 - acute     

2020 week 18 - MIS-C

C12

Known PCR-positive household infection (family member with long 

COVID who was not tested until well after initial household 

outbreak), entire family experienced symptoms consistent with 

SARS-CoV-2 infection, neutralization and nucleocapsid antibodies 

confirmed through serological testing 2020 week 20 2020 week 11

C20

Known PCR-positive household infection, experienced symptoms 

consistent with SARS-CoV-2 infection, neutralization and 

nucleocapsid antibodies confirmed through serological testing unknown 2020 week 12

C23

Known PCR-positive household infection, experienced symptoms 

consistent with SARS-CoV-2 infection, neutralization and 

nucleocapsid antibodies confirmed through serological testing

two family members 

positive both in 2020 

week 49 2020 week 49

C14

Known PCR-positive contacts, experienced symptoms consistent 

with SARS-CoV-2 infection, neutralization and nucleocapsid 

antibodies confirmed through serological testing 2020 week 48 2020 week 48  750 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted January 25, 2022. ; https://doi.org/10.1101/2022.01.14.22269235doi: medRxiv preprint 

https://doi.org/10.1101/2022.01.14.22269235
http://creativecommons.org/licenses/by/4.0/


 

42

 

 751 

Supplemental figure 1. Distribution of specimen collections in children and adults. 752 

 753 

754 

A 

B 
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 755 

Supplemental figure 2. Neutralization titers in adults over time. A) Neutralizing antibody titers 756 

in 14 adults with confirmed SARS-CoV-2 infection followed prospectively over time shown as 757 

weeks post-symptom onset, x axis. B) Aggregated neutralization titers for all adults. Dotted 758 

horizontal lines indicate the limit of detection (20). 759 

 760 

 761 
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762 

  763 

Supplemental figure 3. Nucleocapsid-binding antibody levels in adults over time. A) The 764 

SARS-CoV-2 IgG assay was used to determine SARS-CoV-2 nucleocapsid-binding antibody in 765 

14 adults followed prospectively over time shown as weeks post-symptom onset, x axis. B) 766 

Aggregated index values for all adults. Dotted horizontal lines indicate the limit of detection for 767 

the SARS-CoV-2 IgG assay (1.40). 768 

 769 

Supplemental Table 2. Naming of adults across publications. 770 

 771 

Naming in Crawford et al. 2020 (3) Naming in the present study 

A 

B 
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PID 13 A3 

PID 3C A1 

PID 4C A2 

PID 6C A6 

PID 7C A7 

PID 11C A4 

PID 12C A10 

PID 22C A9 

PID 23C A8 

PID 24C A13 

PID 103C A12 

PID 113C A14 

PID 117C A11 

PID 200C A5 

 772 
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